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SYMMETRIC ROOTS AND ADMISSIBLE PAIRING

ROBIN DE JONG

Abstract. Using the discriminant modular form and the Noether formula
it is possible to write the admissible self-intersection of the relative dualising
sheaf of a semistable hyperelliptic curve over a number field or function field
as a sum, over all places, of a certain adelic invariant χ. We provide a simple
geometric interpretation for this invariant χ, based on the arithmetic of sym-
metric roots. We propose the conjecture that the invariant χ coincides with
the invariant ϕ introduced in a recent paper by S.-W. Zhang.

1. Introduction

Let X be a hyperelliptic curve of genus g ≥ 2 over a field K which is either
a number field or the function field of a curve over a field. Assume that X has
semistable reduction overK. We study, for each place v ofK, a real-valued invariant
χ(Xv) of X ⊗Kv, with the following two properties:

(i) χ(Xv) = 0 if v is non-archimedean and X has good reduction at v;
(ii) for the admissible self-intersection of the relative dualising sheaf (ω, ω)a of

X the formula

(ω, ω)a =
2g − 2

2g + 1

∑

v

χ(Xv) logNv

holds. Here v runs over the places of K, and the Nv are usual local factors
related to the product formula for K.

In the function field context, the invariant χ already appears in work of A. Moriwaki
[13] and K. Yamaki [16], albeit in disguise. It follows from their work that χ(Xv)
is strictly positive if X has non-smooth reduction at v. In fact they prove a precise
lower bound for χ(Xv) in terms of the geometry of the special fiber at v. If X has
a non-isotrivial model, by property (ii) this yields as a corollary an effective proof
of the Bogomolov conjecture for X , i.e. the strict positivity of (ω, ω)a.

The precise definition of χ is given in Section 4. It involves the discriminant
modular form of weight 8g+4, suitably normalised, the ε-invariant of S.-W. Zhang
[19], and the δ-invariant appearing in the Noether formula for smooth projective
curves over K.

Our purpose is to give a geometric interpretation of the invariant χ. Fix, for
each place v of K, an algebraic closure K̄v of Kv. Endow each K̄v with a standard
absolute value | · |v (see Section 3). Then we prove:

Theorem A. Let 〈ω, ω〉 be the Deligne self-pairing of the dualising sheaf ω of X on
Spec(K). There exists a canonical section q of (2g+1)〈ω, ω〉 on Spec(K), obtained
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by pullback from the moduli stack of smooth hyperelliptic curves of genus g over Z,
such that the equality

− log |q|a = (2g − 2)χ(Xv)

holds for each place v of K. Here | · |a is Zhang’s admissible norm on (2g+1)〈ω, ω〉
at v.

The construction of q yields the following simple formula for χ.

Theorem B. Assume that K does not have characteristic 2. Let v be a place of
K, and let w1, . . . , w2g+2 on X ⊗ K̄v be the Weierstrass points of X ⊗ K̄v. Then
for each i = 1, . . . , 2g + 2 the formula

χ(Xv) = −2g



log |2|v +
∑

k 6=i

(wi, wk)a





holds, where (, )a is Zhang’s admissible pairing on Div(X ⊗ K̄v).

In a recent paper [19] S.-W. Zhang introduced, for any smooth projective geo-
metrically connected curve X of genus at least 2 over K, an invariant ϕ(Xv) for
each X⊗Kv such that property (i) holds for ϕ, and property (ii) holds for ϕ if X is
hyperelliptic. We propose the conjecture that ϕ and χ are equal for all hyperelliptic
curves over K and all places of K. This conjecture turns out to be true in the case
g = 2. As we will explain below, this gives a new proof of the Bogomolov conjecture
for curves of genus 2 over number fields.

The main tools in this paper are moduli of (pointed) stable hyperelliptic curves
and the arithmetic of symmetric roots of X . These symmetric roots were exten-
sively studied by J. Guàrdia [4] in the context of an effective Torelli theorem for
hyperelliptic period matrices. They are defined as follows. Let κ be any field of
characteristic not equal to 2 and let X be a hyperelliptic curve of genus g ≥ 2
over κ. Fix a separable algebraic closure κ̄ of κ. Let w1, . . . , w2g+2 on X ⊗ κ̄ be
the Weierstrass points of X ⊗ κ̄, and let h : X → P1

κ be the quotient under the
hyperelliptic involution of X . Fix a coordinate x on P1

κ̄, and suppose that wi gets
mapped to ai on P1

κ̄. Take a pair (wi, wj) of distinct Weierstrass points, and let τ
be an automorphism of P1

κ̄ such that τ(ai) = 0, τ(aj) = ∞, and
∏

k 6=i,j τ(ak) = 1.

The τ(ak) for k 6= i, j are finite, non-zero, and well-defined up to a common scalar

from µ2g, the set of 2g-th roots of unity in κ̄. The resulting subset of S2g \A
2g
κ̄ /µ2g

is denoted by {ℓijk}k 6=i,j and is called the set of symmetric roots on X and (wi, wj).
This is clearly an invariant of X and the pair (wi, wj) over κ̄. It is easily checked
that the formula:

ℓijk =
ai − ak
aj − ak

2g

√

√

√

√

∏

r 6=i,j

(aj − ar)

(ai − ar)

holds for each k 6= i, j. This formula of course has to be interpreted appropriately
if one of the ai, aj , ak equals infinity. For each given k 6= i, j, the element ℓ2gijk of κ̄

lies in the field of definition inside κ̄ of the triple (wi, wj , wk).

Our main result Theorem 3.1 gives a description of a power of ℓ2gijk as a rational
function on the moduli stack of hyperelliptic curves with three marked Weierstrass
points. As a corollary of this result we obtain the following remarkable formula,
expressing the norm of a symmetric root as a special value of Zhang’s admissible
pairing on divisors.
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Theorem C. Assume that K does not have characteristic 2. Let v be a place of
K, and let wi, wj , wk be three distinct Weierstrass points on X ⊗ K̄v. Let ℓijk in
K̄×

v /µ2g be the symmetric root on the triple (wi, wj , wk). Then the formula

(wi − wj , wk)a = −
1

2
log |ℓijk|v

holds.

We mention that for an archimedean place v this result says that

Gv(wi, wk)

Gv(wj , wk)
=
√

|ℓijk|v ,

whereGv is the Arakelov-Green’s function on the compact Riemann surfaceX(K̄v).
This formula is remarkable since it says that a special value of some transcendental
function on X(K̄v) is algebraic. We believe that this fact merits further attention.

The main result and Theorem C are proven in Section 3. After introducing the
χ-invariant in Section 4 we give in Section 5 our more intrinsic approach to χ and
prove Theorems A and B. In Section 6 we compare χ with Zhang’s ϕ-invariant.
Throughout, the reader is assumed to be familiar with the theory of admissible
pairing on curves as in [18]. All schemes and algebraic stacks in this paper are
assumed locally noetherian and separated.

2. Admissible pairing and relative dualising sheaf

We begin with a useful description of 〈ω, ω〉 for families of semistable hyperel-
liptic curves. The contents of this section straightforwardly generalise those of [2,
Section 1] which treats the genus 2 case.

We start with a few definitions. Let S be a (locally noetherian, separated)
scheme. A proper flat family π : X → S of curves of genus g ≥ 2 is called a smooth
hyperelliptic curve over S if π is smooth and admits an involution σ ∈ AutS(X)
such that σ restricts to a hyperelliptic involution in each geometric fiber of π. If π
is a smooth hyperelliptic curve, the involution σ is uniquely determined. We call
π : X → S a generically smooth semistable hyperelliptic curve if π is semistable,
and there exist an open dense subscheme U of S and an involution σ ∈ AutS(X)
such that XU together with the restriction of σ to XU is a smooth hyperelliptic
curve over U . Again, if π is a generically smooth semistable hyperelliptic curve,
the involution σ is unique; we call σ the hyperelliptic involution of X over S.

Let π : X → S be a generically smooth semistable hyperelliptic curve of genus
g ≥ 2. Let ω be the relative dualising sheaf of π and let W be a σ-invariant section
of π with image in the smooth locus of π. The image of W in X induces a relative
Cartier divisor on X which we also denote by W . We make the convention that
whenever a Cartier divisor on a scheme is given, the associated line bundle will
be denoted by the same symbol. Moreover we use additive notation for the tensor
product of line bundles.

Assume for the moment that π is smooth. By [5, Lemma 6.2] there exists a
unique isomorphism:

ω
∼=
−→ (2g − 2)W − (2g − 1)π∗〈W,W 〉 ,

compatible with base change, such that pullback along W induces the adjunction
isomorphism:

〈W,ω〉
∼=
−→ −〈W,W 〉
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on S. Here 〈·, ·〉 denotes Deligne pairing of line bundles on X . Now drop the
condition that π is smooth. By the above isomorphisms we have a canonical non-
zero rational section s of the line bundle:

ω − (2g − 2)W + (2g − 1)π∗〈W,W 〉

on X . Denote by V its divisor on X ; then V is disjoint from the smooth fibers of
π, and W ∗V = 〈W,V 〉 is canonically trivial on S.

Next let (Wi,Wk) be a pair of σ-invariant sections of π with image in the smooth
locus of π. Denote by Vi, Vk the associated Cartier divisors supported in the non-
smooth fibers of π. We define a line bundle Qik on S associated to (Wi,Wk) as
follows:

Qik = −4g(g − 1)〈Wi,Wk〉 − 〈Wi, Vk〉 − 〈Vi,Wk〉+ 〈Vi, Vk〉 .

Note that Qik has a canonical non-zero rational section qik. We have a canonical
symmetry isomorphism

(2.1) Qik

∼=
−→ Qki

sending qik to qki. If S is the spectrum of a discrete valuation ring we have the
following functoriality of (Qik, qik) in passing from π : X → S to a minimal desingu-
larisation ρ : X ′ → X of X over S: the sections Wi,Wk lift to σ-invariant sections
of X ′, and one obtains the relative dualising sheaf of X ′ over S as the pullback of
ω along ρ. It follows that the Vi, Vk of X ′ over S are obtained by pullback as well,
and so the formation of Qik and its canonical rational section qik are compatible
with the passage from X to X ′.

Assume that S is an integral scheme.

Proposition 2.1. There exists a canonical isomorphism:

ϕik : 〈ω, ω〉
∼=
−→ Qik

of line bundles on S, compatible with any dominant base change. Let K be either a
complete discrete valuation field or R or C and let K̄ be an algebraic closure of K.
If S = Spec(K̄) then ϕik is an isometry for the admissible metrics on both 〈ω, ω〉
and Qik.

Proof. By construction of Vi we have a canonical isomorphism:

(2.2) ω
∼=
−→ (2g − 2)Wi + Vi − (2g − 1)π∗〈Wi,Wi〉

on X . Hence we have:

(2.3) (2g − 2)(Wi −Wk)
∼=
−→ Vk − Vi + (2g − 1)π∗〈Wi,Wi〉 − (2g − 1)π∗〈Wk,Wk〉 ,

canonically. Using pullback along Wi and Wk we find canonical isomorphisms:

(2g − 2)〈Wi −Wk,Wi −Wk〉
∼=
−→ 〈Vk − Vi,Wi −Wk〉
∼=
−→ 〈Wi, Vk〉+ 〈Vi,Wk〉 .

Hence we find:

(2.4) (2g − 2)(〈Wi,Wi〉+ 〈Wk,Wk〉)
∼=
−→ 〈Wi, Vk〉+ 〈Vi,Wk〉+ 4(g − 1)〈Wi,Wk〉 .

Also from (2.2) one obtains:

−(2g − 1)〈Wk, π
∗〈Wi,Wi〉〉

∼=
−→ −〈Wk,Wk〉 − (2g − 2)〈Wi,Wk〉 − 〈Vi,Wk〉
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by using the adjunction isomorphism:

(2.5) 〈Wk, ω〉
∼=
−→ −〈Wk,Wk〉 ,

and likewise:

−(2g − 1)〈Wi, π
∗〈Wk,Wk〉〉

∼=
−→ −〈Wi,Wi〉 − (2g − 2)〈Wi,Wk〉 − 〈Wi, Vk〉 .

Adding these two isomorphisms, multiplying by 2g − 2, and using (2.4) we obtain:

−(2g − 2)(2g − 1)(〈Wi, π
∗〈Wk,Wk〉〉+ 〈Wk, π

∗〈Wi,Wi〉〉)
∼=
−→

−(2g − 1)(〈Wi, Vk〉+ 〈Vi,Wk〉)− 4(g − 1)(2g − 1)〈Wi,Wk〉 .

Now note that:

〈ω, ω〉
∼=
−→ (2g − 2)2〈Wi,Wk〉+ (2g − 2)(〈Wi, Vk〉+ 〈Vi,Wk〉) + 〈Vi, Vk〉

− (2g − 2)(2g − 1)(〈Wi, π
∗〈Wk,Wk〉〉+ 〈Wk, π

∗〈Wi,Wi〉〉) .

Plugging in the previous result gives the required isomorphism.
To see that ϕik is an isometry for the admissible metrics on both sides if S =

Spec(K̄) with K a complete discretely valued field or K = R or C it suffices to
verify that both (2.2) and the adjunction isomorphism (2.5) are isometries for the
admissible metrics. But that the adjunction isomorphism (2.5) is an isometry for
the admissible metrics is precisely in [18], sections 2.7 (archimedean case) and 4.1
(non-archimedean case). That (2.2) is an isometry for the admissible metrics on
both sides can be seen as follows. The curvature form (see [18], section 2.5) of both
left and right hand side of (2.2) is equal to (2g − 2)µ, where µ is the admissible
metric on the reduction graph of X (if K is a complete discretely valued field) or the
Arakelov (1, 1)-form on X(K̄) (if K = R or C). This implies (see once again [18],
section 2.5) that the quotient of the admissible metric on ω and the metric put on
ω via the isomorphism (2.2) is constant on X ⊗ K̄. By restricting the isomorphism

(2.2) to Wi on X ⊗ K̄ we find the adjunction isomorphism 〈Wi, ω〉
∼=
−→ −〈Wi,Wi〉.

As this is an isometry, so is (2.2). �

3. Main result

In this section we prove our main result and derive Theorem C from it. Let S
be an integral scheme and let π : X → S be a generically smooth semistable hyper-
elliptic curve of genus g ≥ 2 over S.

Assume that a triple (Wi,Wj ,Wk) of σ-invariant sections of π is given with
image in the smooth locus of π. Assume as well that the generic characteristic
of S is not equal to 2. We view the element ℓ2gijk, defined fiber by fiber along the
non-empty open subscheme of S where π is smooth and the residue characteristic
is not 2, as a rational section of the structure sheaf OS of S. On the other hand,
from Proposition 2.1 we obtain a canonical isomorphism:

ψijk = ϕik ⊗ ϕ−1
jk : −Qik +Qjk

∼=
−→ OS ,

compatible with dominant base change, and isometric for the admissible metrics on
both sides. This yields a rational section of OS by taking the image of q−1

ik ⊗ qjk
under ψijk. Our main result is that the image of q−1

ik ⊗ qjk under ψijk is essentially

a power of ℓ2gijk.
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Theorem 3.1. ψijk maps the rational section q−1
ik ⊗ qjk of −Qik + Qjk to the

rational section (−ℓ2gijk)
g−1 of OS.

A first step in the proof is the following result.

Proposition 3.2. Assume that S is the spectrum of a discrete valuation ring R,
that X is regular, and that π is smooth if the residue characteristic of R is equal
to 2. Then the formula:

−ν(qik) + ν(qjk) = 2g(g − 1)ν(ℓijk)

holds, where ν(·) denotes order of vanishing along the closed point of S.

Proof. We recall that:

Qik = −4g(g − 1)〈Wi,Wk〉 − 〈Wi, Vk〉 − 〈Vi,Wk〉+ 〈Vi, Vk〉 .

As 〈(2g−2)Wi−ω+Vi, Vk〉 is canonically trivial we have a canonical isomorphism:

Qik

∼=
−→ −4g(g − 1)〈Wi,Wk〉 − (2g − 1)〈Wi, Vk〉 − 〈Vi,Wk〉+ 〈Vk, ω〉

and hence:

−ν(qik)+ν(qjk) = 4g(g−1)(Wi−Wj,Wk)+(2g−1)(Wi−Wj , Vk)+(Vi−Vj ,Wk) ,

where (·, ·) denotes intersection product on Div(X). Our task is thus to show that:

4g(g− 1)(Wi−Wj ,Wk)+ (2g− 1)(Wi−Wj , Vk)+ (Vi−Vj ,Wk) = 2g(g− 1)ν(ℓijk) .

Let S′ → S be any finite cover of S, and let X ′ → S′ be the minimal desingularisa-
tion of the base change of X → S along S′ → S. By functoriality of (Qik, qik) and
invariance under pullback it suffices to prove the formula for X ′ → S′. We start
with the case that the residue characteristic of R is not equal to 2. Let m be the
maximal ideal of R and let K be the fraction field of R. By [7, Lemma 4.1] we may

assume that X ⊗K has an affine equation y2 =
∏2g+2

r=1 (x− ar) such that:

• the ar are distinct elements of R;
• the valuations ν(ar − as) are even for r 6= s;
• the ar lie in at least 3 distinct residue classes of R modulo m.

As the sections Wi,Wj ,Wk are disjoint we are reduced to showing that:

(2g − 1)(Wi −Wj , Vk) + (Vi − Vj ,Wk) = 2g(g − 1)ν(ℓijk) .

Let α be the subset {a1, . . . , a2g+2} of R. To α we associate a finite tree T , as
follows: for each positive integer n let ρn : α → R/mn be the canonical residue
map. Define Λn to be the set of residue classes λ in R/mn such that ρ−1

n (λ) ⊂ α
has at least 2 elements. The vertices of T are then the elements λ of Λn for n
running through the non-negative integers; there are only finitely many such λ.
The edges of T are the pairs (λ, λ′) of vertices λ, λ′ where λ ∈ Λn, λ

′ ∈ Λn+1 and
λ′ 7→ λ under the natural map Λn+1 → Λn, for some n. If λ is a vertex of T there
is a unique n such that λ ∈ Λn; we call n the level of λ.

Let F be the special fiber of π and let Γ be the dual graph of F . According to
[1, Section 5] or [7, Section 4] there is a natural graph morphism ϕ : Γ → T . If C
is a vertex of Γ we denote by λC the image of C in T , and by nC the level of λC .
For each r = 1, . . . , 2g + 2 we denote by Cr the unique irreducible component of F
through which the σ-invariant section of π corresponding to ar passes, by λr the
image of Cr in T , and by nr the level of λr. By construction of ϕ the element ar
is a representative of the class λr and nr = maxs6=r ν(ar − as).
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For each irreducible component C of F we choose a representative aC of λC in
α. If f is a non-zero rational function on X we denote by νC(f) the multiplicity of
f along C. We have:

νC(x− ar) = min{nC , ν(aC − ar)} ,

independent of the choice of aC , by [7], proof of Lemma 5.1. In particular:

νCk
(x− ar) =

{

ν(ak − ar) r 6= k
nk r = k

and so:

νCk
(y) =

1

2
nk +

1

2

∑

r 6=k

ν(ak − ar) .

Now write Vk =
∑

C µk(C) · C with µk(C) ∈ Z and with C running through the
irreducible components of F . We claim that:

µk(C) = (g − 1)min{nC , ν(ak − aC)} − νC(y) + nC − (g −
1

2
)nk +

1

2

∑

r 6=k

ν(ak − ar)

for all C. To see this, consider the rational section:

ωk = (x− ak)
g−1 dx

y

of ω. Let µ′
k(C) = (g − 1)νC(x − ak) − νC(y) + nC . According to [7, Lemma 5.2]

we have:

divX ωk = (2g − 2)Wk +
∑

C

µ′
k(C) · C .

It follows that Vk and
∑

C µ
′
k(C) · C differ by a multiple of F . As W ∗

k Vk is trivial
we find that:

Vk =
∑

C

(µ′
k(C)− µ′

k(Ck)) · C .

As we have:

µ′
k(Ck) = (g − 1)νCk

(x− ak)− νCk
(y) + nk

= (g − 1)nk −
1

2
nk −

1

2

∑

r 6=k

ν(ar − ak) + nk

= (g −
1

2
)nk −

1

2

∑

r 6=k

ν(ar − ak) ,

the claim follows. As an immediate consequence we have:

(Wi, Vk) = µk(Ci)

= (g − 1)min{ni, ν(ak − ai)} − νCi
(y) + ni − (g −

1

2
)nk +

1

2

∑

r 6=k

ν(ak − ar)

= (g − 1)ν(ak − ai) +
1

2
ni −

1

2

∑

r 6=i

ν(ar − ai)− (g −
1

2
)nk +

1

2

∑

r 6=k

ν(ak − ar) ,

so that:

(Wi −Wj , Vk) = (g − 1)ν

(

ai − ak
aj − ak

)

+
1

2
(ni − nj) +

1

2

∑

r 6=i,j

ν

(

aj − ar
ai − ar

)

,
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and in a similar fashion:

(Vi − Vj ,Wk) = (g − 1)ν

(

ai − ak
aj − ak

)

− (g −
1

2
)(ni − nj)−

1

2

∑

r 6=i,j

ν

(

aj − ar
ai − ar

)

.

This leads to:

(2g−1)(Wi−Wj , Vk)+(Vi−Vj ,Wk) = 2g(g−1)ν

(

ai − ak
aj − ak

)

+(g−1)
∑

r 6=i,j

ν

(

aj − ar
ai − ar

)

,

and the required formula follows.
Next we consider the case that R does have residue characteristic equal to 2.

We have that X → S is smooth, and we may assume that all Weierstrass points of
X ⊗K are rational over K, hence extend to sections of π. The divisors Vi, Vj and
Vk are empty, and we are reduced to showing that simply:

2(Wi −Wj ,Wk) = ν(ℓijk) .

Let h : X → Y be the quotient of X by σ. According to [10, Section 5] we have
that Y → S is a smooth proper family of curves of genus 0, and h is finite flat of
degree 2. Let Pi, Pj , Pk : S → Y denote the sections Wi,Wj ,Wk, composed with h.
By the projection formula we have:

2(Wi,Wk) = (Pi, Pk) , 2(Wj ,Wk) = (Pj , Pk) .

By [7, Lemma 6.1] we may assume that on an affine open subset X is given by
an equation y2 + p(x)y = q(x) with p, q ∈ R[x] such that p2 + 4q is a separable
polynomial of degree d = 2g+2. As p = 0 defines the fixed point subscheme of the
hyperelliptic involution on the special fiber of X → S the coefficients of p generate
the unit ideal in R. It follows that we may even assume after a translation that p(0)
is a unit in R and subsequently after making a coordinate transformation x 7→ x−1

that p has degree g+1 and leading coefficient a unit in R. Write f = p2+4q ∈ R[x].

Then f has leading coefficient a unit in R as well. We can write f = b·
∏2g+2

r=1 (x−ar)
in K[x]; then b ∈ R×, and by Gauss’s Lemma the ai are actually in R. Let
ai, aj , ak ∈ R correspond to Pi, Pj , Pk. As y

2 = f(x) is a hyperelliptic equation for
X ⊗K we have:

ℓijk =
ai − ak
aj − ak

2g

√

∏

r 6=i,j

aj − ar
ai − ar

=
ai − ak
aj − ak

2g

√

−
f ′(aj)

f ′(ai)

in K×/µ2g. Since by the projection formula:

2(Wi,Wk) = ν(ai − ak) , 2(Wj ,Wk) = ν(aj − ak) ,

we are done once we prove that f ′(aj)/f
′(ai) is a unit in R. Let ar be an arbitrary

root of f ; we will show that ν(f ′(ar)) = ν(4), so that ν(f ′(ar)) is independent of r.
From the equation p(ar)

2 + 4q(ar) = 0 we obtain first of all that p(ar) is divisible
by 2 in R. From f = p2 + 4q in R[x] we obtain f ′(ar) = 2p(ar)p

′(ar) + 4q′(ar) so
that 4 divides f ′(ar) in R and hence ν(f ′(ar)) ≥ ν(4). According to [7, Proposition
6.3] we have however:

2g+2
∑

s=1

ν(f ′(as)) = ν(bd ·
∏

s6=t

(as − at)) = ν(b2d−2 ·
∏

s6=t

(as − at)) = (2g + 2)ν(4) ,

and we conclude that ν(f ′(ar)) = ν(4) as required. �
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Let I∗
g,3 be the moduli stack, over Z[1/2], of pairs (X → S, (Wi,Wj ,Wk)) with S

a Z[1/2]-scheme, X → S a smooth hyperelliptic curve of genus g, and (Wi,Wj ,Wk)
a triple of distinct σ-invariant sections of X → S.

Lemma 3.3. The moduli stack I∗
g,3 is irreducible, and smooth over Spec(Z[1/2]).

Proof. Let Ig be the moduli stack of smooth hyperelliptic curves of genus g over
Z[1/2], and let U1 be the universal hyperelliptic curve over Ig. Define inductively
for n ≥ 2 the algebraic stack Un over Un−1 as the base change of U1 → Ig along
Un−1 → Ig. In particular, the algebraic stack Un is a smooth hyperelliptic curve
over Un−1, for all n ≥ 2. Let Vn be the fixed point substack of the hyperelliptic
involution of Un over Un−1; then Vn → Un is a closed immersion, and the induced
map Vn → Un−1 is finite étale by [10, Corollary 6.8]. We are interested in the cases
n = 1, 2, 3. Put:

A = V2 ×U1
V1 , B = V3 ×U2

V2 , C = A×V2
B .

As U1 is naturally the moduli stack of 1-pointed hyperelliptic curves over Z[1/2],
we have a natural map I∗

g,3 → U3. It factors via the closed immersion C → U3,
and the induced map I∗

g,3 → C is an open immersion. Since C → Ig is étale and
the structure map Ig → Spec(Z[1/2]) is smooth (see [8, Theorem 3]), we obtain
that I∗

g,3 is smooth over Spec(Z[1/2]). It follows that the generic points of I∗
g,3

all lie above the generic point of Spec(Z[1/2]). But I∗
g,3 ⊗ Q is a quotient of the

moduli stack of 2g+2 distinct points on P1, which is irreducible, hence I∗
g,3 ⊗Q is

irreducible. It follows that I∗
g,3 is irreducible as well. �

We need a suitable compactification of I∗
g,3. Note that we have a natural closed

immersion I∗
g,3 → Mg,3 where Mg,3 is the moduli stack, over Z[1/2], of 3-pointed

smooth projective curves of genus g. We let I
∗

g,3 be the stack-theoretic closure

of I∗
g,3 in Mg,3, the Knudsen-Mumford compactification of Mg,3. Then I

∗

g,3 is

integral, and proper and flat over Z[1/2]. We have ℓ2gijk and, via ψijk, also q
−1
ik ⊗ qjk

as rational sections of the structure sheaf of I
∗

g,3. In fact, for every generically
smooth semistable hyperelliptic curve π : X → S with S an integral Z[1/2]-scheme
together with a triple of distinct σ-invariant sections with image in the smooth

locus of π, we have a natural period map S → I
∗

g,3 such that both q−1
ik ⊗ qjk and

ℓ2gijk associated to π on S are obtained by pullback from I
∗

g,3.

It suffices therefore to prove Theorem 3.1 for the tautological curve over I
∗

g,3.

Proof of Theorem 3.1. We first prove that q−1
ik ⊗ qjk and ℓ

2g(g−1)
ijk on I

∗

g,3 differ by

a unit in Z[1/2]. Let ν : ′I
∗

g,3 → I
∗

g,3 be the normalisation of I
∗

g,3. As Z[1/2] is an

excellent ring, the morphism ν is finite birational. In particular ′I
∗

g,3 and I
∗

g,3 are

isomorphic over an open dense substack. Hence, in order to prove that q−1
ik ⊗ qjk

and ℓ
2g(g−1)
ijk differ by a unit in Z[1/2] it suffices to prove that their pullbacks along

ν do so over ′I
∗

g,3. This goes in two steps: first we prove that q−1
ik ⊗ qjk and

ℓ
2g(g−1)
ijk differ by an invertible regular function on ′I

∗

g,3, and then that the set of

such functions is precisely Z[1/2]×. As to the first step, since ′I
∗

g,3 is normal, it

suffices to prove that for every point x′ of ′I
∗

g,3 of height 1, the sections q
−1
ik ⊗qjk and

ℓ
2g(g−1)
ijk differ by a unit in the local ring Ox′ at x′. So let x′ be a point of height 1
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on ′I
∗

g,3. Let Spec(Ox′) → ′I
∗

g,3
ν
−→ I

∗

g,3 be the canonical map. Then the generic

point of Spec(Ox′) maps to the generic point of I
∗

g,3 and by pullback we obtain a
generically smooth stable hyperelliptic curve π′ : X ′ → Spec(Ox′) over Ox′ together
with a triple of distinct σ-invariant sections with image in the smooth locus of π′.
By functoriality of (Qik, qik) in passing from X ′ to a minimal desingularisation of
X ′ over Spec(Ox′) we may assume for our purposes that X ′ is itself regular and
semistable over Spec(Ox′). Proposition 3.2 then gives us precisely what we need.

Next let p : ′I
∗

g,3 → Spec(Z[1/2]) be the structure map; we claim that p∗O′I
∗

g,3
is

equal to OSpec(Z[1/2]). This will prove that the set of invertible regular functions on
′I

∗

g,3 is equal to Z[1/2]×. The claim follows from: (i) p is proper, and (ii) p is flat

and ′I
∗

g,3 ⊗Q is irreducible. Indeed, if p is proper and flat then p∗O′I
∗

g,3
is a finite

torsion-free OSpec(Z[1/2])-module. If moreover ′I
∗

g,3 ⊗Q is irreducible then p∗O′I
∗

g,3

has generic rank 1, and p∗O′I
∗

g,3
= OSpec(Z[1/2]) follows. That (i) is satisfied is

clear as both ν and I
∗

g,3 → Spec(Z[1/2]) are proper. To see (ii), recall that I
∗

g,3 is
irreducible and has its generic point mapping to the generic point of Spec(Z[1/2]).

The same holds for ′I
∗

g,3 since ν is birational; in particular ′I
∗

g,3 is flat over Z[1/2].

The next step is to prove that the unit u in Z[1/2] connecting q−1
ik ⊗ qjk and

ℓ
2g(g−1)
ijk is either +1 or −1. For this we use a smooth hyperelliptic curve X → S
with a triple of σ-invariant sections over the spectrum S of a discrete valuation
ring with residue characteristic equal to 2, and generic characteristic zero (such

data exist). We have a period map S ⊗ Q → I
∗

g,3 ⊗ Q and applying once more
Proposition 3.2 we see that the exponent of 2 in u is vanishing.

We finish by proving that u = (−1)g−1. Cyclic permutation of the three σ-
invariant sections in the moduli data induces a group of automorphisms of the
moduli stack I∗

g,3 of order three. Its action on the regular functions on I∗
g,3 yields

the regular functions ℓ2gjki and ℓ
2g
kij from ℓ2gijk, as well as the functions q−1

ji ⊗ qki and

q−1
kj ⊗ qij from q−1

ik ⊗ qjk. A small computation shows the cocyle relation:

ℓ2gijk · ℓ2gjki · ℓ
2g
kij = −1 ,

whereas we have:
q−1
ik ⊗ qjk ⊗ q−1

ji ⊗ qki ⊗ q−1
kj ⊗ qij = 1

by the canonical symmetry isomorphism (2.1). Now write ℓ
2g(g−1)
ijk = u · q−1

ik ⊗ qjk.
As u, being a constant function, is left invariant by any automorphism of I∗

g,3, we
obtain the identities:

ℓ
2g(g−1)
jki = u · q−1

ji ⊗ qki , ℓ
2g(g−1)
kij = u · q−1

kj ⊗ qij .

Combining the cocycle relations with these identities yields u = u3 = (−1)g−1. The
proof of Theorem 3.1 is thereby complete. �

We are now ready to prove Theorem C. LetK be a field which is either a complete
discrete valuation field, or R or C. Let K̄ be an algebraic closure of K and endow
K̄ with its canonical absolute value | · |. This absolute value is defined as follows:
if K is a complete discrete valuation field, endow K with the absolute value | · |K
such that |π| = 1/e for a uniformizer π of K; we get an absolute value | · | on K̄ by
taking the unique extension of | · |K to K̄. If K = R or K = C we endow K̄ = C

with the standard euclidean norm.
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Assume that K does not have characteristic 2.

Theorem 3.4. Let X be a hyperelliptic curve over K, and let (, )a be Zhang’s
admissible pairing on Div(X ⊗ K̄). Let wi, wj , wk be three distinct Weierstrass
points on X ⊗ K̄. Then the formula:

(wi − wj , wk)a = −
1

2
log |ℓijk|

holds.

Proof. We apply Theorem 3.1 to the morphism X ⊗ K̄ → Spec(K̄). Let g be the

genus of X . Under the isomorphism ψijk the sections q−1
ik ⊗ qjk and (−ℓ2gijk)

g−1 are
identified, and by Proposition 2.1 the isomorphism ψijk is an admissible isometry.
Let | · |a be the admissible norm on −Qik +Qjk on Spec(K̄). We obtain:

2g(g − 1) log |ℓijk| = log |q−1
ik ⊗ qjk|a

= −4g(g − 1)(wi − wj , wk)a ,

and the theorem follows. �

Corollary 3.5. Let wi, wj , wk, wr be four distinct Weierstrass points on X ⊗ K̄.
Let µijkr in K̄ be the cross-ratio on wi, wj , wk, wr. Then the formula:

(wi − wj , wk − wr)a = −
1

2
log |µijkr |

holds.

Proof. This follows directly from the identity:

ℓijk
ℓijr

=
ai − ak
aj − ak

·
aj − ar
ai − ar

= µijkr

which is easily checked. �

Remark 3.6. In the case that K = R or C the admissible pairing is given by the
Arakelov-Green’s function G of the compact Riemann surface X(K̄). Theorem 3.4
translates into the remarkable formula:

G(wi, wk)

G(wj , wk)
=
√

|ℓijk| .

It would be interesting to see if one could give a direct proof of this formula that
does not use moduli spaces.

4. The invariant χ

In this section we introduce the χ-invariant as announced in the Introduction.
The definition may seem rather ad hoc at first sight, but in the function field context
the invariant already occurs, as mentioned before, in work of A. Moriwaki [13] and
K. Yamaki [16]. In the next section we present a more intrinsic approach to χ,
using the arithmetic of symmetric roots.

Let π : X → S be an arbitrary generically smooth semistable hyperelliptic curve
of genus g with S an integral scheme. Let ω be the relative dualising sheaf of π,
and let λ = detRπ∗ω be the Hodge bundle on S. As is explained in [11, Section 2],
the line bundle (8g + 4)λ has a canonical non-zero rational section Λg, satisfying
the following properties. We write Ig for the moduli stack of smooth hyperelliptic
curves of genus g over Z.
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• the formation of Λg is compatible with dominant base change;
• if S is normal, then Λg is global;
• if π is smooth, then Λg is global and nowhere vanishing;
• if S is the spectrum of a field K which is not of characteristic 2, and
y2 + p(x)y = q(x) is an affine equation of X with p, q ∈ K[x], one has:

Λg = (2−(4g+4) ·D)g ·

(

dx

2y + p
∧ · · · ∧

xg−1dx

2y + p

)⊗8g+4

,

where D is the discriminant of the separable polynomial p2 + 4q ∈ K[x];
• let Ig be the stack-theoretic closure of Ig in Mg, the moduli stack of stable
curves of genus g over Z. Then on S, the rational section Λg can be obtained

as the pullback of a rational section Λg of (8g + 4)λ on Ig.

Now assume that S = Spec(K) where K is either a complete discrete valuation
field or R or C. Note that we put no restrictions, at this stage, on the characteristic
of K. The section Λg gives rise to a real-valued invariant d(X) associated to X , as
follows. If K is non-archimedean, let X → Spec(R) be the minimal regular model
of X , where R is the valuation ring of K. Then d(X) is the order of vanishing of Λg

along the closed point of S. If K is archimedean, the C-vector space H0(X(C), ω)
is equipped with a natural hermitian inner product (ω, η) 7→ i

2

∫

X(C)
ω η̄, and d(X)

is the − log of the norm of Λg with respect to this inner product.
One can give explicit formulas for d(X). Start again with the case that K is a

complete discrete valuation field. Assume that X has semistable reduction over K,
and let as above X → Spec(R) be the minimal regular model of X . Let x be a
singular point in the special fiber of X . We say that x is of type 0 if the local
normalisation of the special fiber at x is connected, and that x is of type i, where
1 ≤ i ≤ ⌊g/2⌋, if the local normalisation of the special fiber of X at x is the disjoint
union of two semistable curves of genus g and g − i. Let x be a singular point
of type 0. Let σ be the hyperelliptic involution of X . We have the following two
possibilities for x:

• x is fixed by σ. Then we say x is of subtype 0;
• x is not fixed by σ. Then the local normalisation of the special fiber of X
at {x, σ(x)} consists of two connected components of genus j and g− j− 1,
say, where 1 ≤ j ≤ ⌊(g − 1)/2⌋. In this case we say that x is of subtype j.

Let δi(X) for i = 1, . . . , ⌊g/2⌋ be the number of singular points in the special fiber of
X of type i, let ξ0(X) be the number of singular points of subtype 0, and let ξj(X)
for j = 1, . . . , ⌊(g − 1)/2⌋ be the number of pairs of nodes of subtype j. Then the
following equality holds, proved in increasing order of generality by M. Cornalba
and J. Harris, I. Kausz, and K. Yamaki [15]:

(4.1) d(X) = gξ0(X) +

⌊(g−1)/2⌋
∑

j=1

2(j + 1)(g − j)ξj(X) +

⌊g/2⌋
∑

i=1

4i(g − i)δi(X) .

If K equals R or C then d(X) can be related to a product of Thetanullwerte, as
explained in [5, Section 8]. Let τ in the Siegel upper half space be a normalised
period matrix for X(C) formed on a canonical symplectic basis of H1(X(C),Z).
Let ϕg be the level 2 Siegel modular form from [9, Definition 3.1] and put:

∆g = 2−(4g+4)nϕg ,
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where n =
(

2g
g+1

)

. Then the real number ‖∆g‖(X) = (det Imτ)2r |∆g(τ)| is indepen-

dent of the choice of τ , where r =
(

2g+1
g+1

)

, hence defines an invariant of X(C). It

follows from [9, Proposition 3.2] that the formula:

(4.2) nd(X) = −n log ‖Λg‖ = −4g2r log(2π)− g log ‖∆g‖(X)

holds.
The invariant χ(X) of X is determined by d(X) and the invariants ε(X) and

δ(X) which we discuss next. The invariant ε(X) stems from [18] and is defined as
follows. Let K again be non-archimedean. We keep the assumption that X has
semistable reduction over K. Let R(X) be the reduction graph of X , let µX be the
admissible measure on R(X), let KX be the canonical divisor on R(X), and let gX
be the admissible Green’s function on R(X). Then:

ε(X) =

∫

R(X)

gX(x, x)((2g − 2)µX + δKX
) .

If K is archimedean, one simply puts ε(X) = 0.

As to δ(X), for K non-archimedean we put δ(X) =
∑⌊g/2⌋

i=0 δi(X), the number
of singular points on the special fiber of the minimal regular model of X over K; if
K equals R or C we put δ(X) = −4g log(2π) + δF (X) where δF (X) is the Faltings
delta-invariant of X(C) defined on [3, p. 402].

The invariant χ(X) is determined by the following equality:

(4.3) (2g − 2)χ(X) = 3d(X)− (2g + 1)(ε(X) + δ(X)) .

Let K be non-archimedean. It is clear that χ(X) = 0 if X has good reduction,
since each of d, ε and δ vanishes in this case.

From [13] one can calculate χ(X) in the case that g = 2, based on the classifica-
tion of the semistable fiber types in genus 2. We display the results in a table:

Type d/2 δ ε χ

I 0 0 0 0

II(a) 2a a a a

III(a) a a 1
6a

1
12a

IV (a, b) 2a+ b a+ b a+ 1
6b a+ 1

12b

V (a, b) a+ b a+ b 1
6 (a+ b) 1

12 (a+ b)

V I(a, b, c) 2a+ b+ c a+ b+ c a+ 1
6 (b+ c) a+ 1

12 (b + c)

V II(a, b, c) a+ b+ c a+ b+ c 1
6 (a+ b+ c) + 1

6
abc

ab+bc+ca
1
12 (a+ b+ c)− 5

12
abc

ab+bc+ca

In the case g ≥ 3 one has an effective lower bound for χ(X) which is strictly positive
in the case of non-smooth reduction, by work of Yamaki [16]. We quote his result:

χ(X) ≥
(2g − 5)

24g
ξ0(X)+

⌊(g−1)/2⌋
∑

j=1

3j(g − 1− j)− g − 2

3g
ξj(X)+

⌊g/2⌋
∑

i=1

2i(g − i)

g
δi(X)

if g ≥ 5, and:

χ(X) ≥
(2g − 5)

24g
ξ0(X) +

⌊(g−1)/2⌋
∑

j=1

2j(g − 1− j)− 1

2g
ξj(X) +

⌊g/2⌋
∑

i=1

2i(g − i)

g
δi(X)
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for the cases g = 3, 4. The most difficult part of the proof lies in obtaining suitable
upper bounds for the ε-invariant ranging over the reduction graphs of hyperelliptic
curves of a fixed genus using combinatorial optimisation.

If K is archimedean, one easily gets an exact formula for χ(X) from (4.2) and
(4.3). We state the result for completeness:

χ(X) = −
8g(2g + 1)

2g − 2
log(2π)−

3g

(2g − 2)n
log ‖∆g‖(X)−

2g + 1

2g − 2
δF (X) .

If K is a number field or the function field of a curve over a field k0, and X has
semistable reduction over K, one has the following global formulas involving d, ε, δ
and the places v of K. Let Nv be the following local factors at v: in the number
field case and for v non-archimedean, put Nv = #κ(v) with κ(v) the residue field
at v; for v archimedean put logNv = 1 if v is real, and logNv = 2 if v is complex.
In the function field case, let logNv be the degree of v over the base field k0. Then
first of all:

(8g + 4) deg detRπ∗ω =
∑

v

d(Xv) logNv ,

where deg detRπ∗ω is the geometric degree of detRπ∗ω in the function field case,
and the non-normalised Faltings height of X in the number field case. This follows
directly from the definition of d. Next one has:

(ω, ω)a = (ω, ω)−
∑

v

ε(Xv) logNv

by [19, Theorem 4.4], where (ω, ω)a and (ω, ω) are the admissible and usual self-
intersections of the relative dualising sheaf of X over K, respectively. Finally:

12 deg detRπ∗ω = (ω, ω) +
∑

v

δ(Xv) logNv

which is the Noether formula for X over S, cf. [12, Théorème 2.5] for the number
field case.

We easily find the formula:

(4.4) (ω, ω)a =
2g − 2

2g + 1

∑

v

χ(Xv) logNv

expressing (ω, ω)a in terms of the χ(Xv). From the results of Moriwaki and Yamaki
mentioned above one gets an effective version of the Bogomolov conjecture for X ,
if K is a function field.

5. Intrinsic approach to χ

In this section we provide an alternative approach to χ. We construct a canon-
ical non-zero rational section q of the line bundle (2g + 1)〈ω, ω〉 on the base of a
generically smooth semistable hyperelliptic curve of genus g, and show that χ is
essentially the − log of the admissible norm of q.

A crucial ingredient of our approach is the arithmetic of the symmetric discrimi-
nants of a hyperelliptic curve. These are intimately related to the curve’s symmetric
roots, see [4, Section 2] for a discussion. The definition is as follows. Let κ be a
field not of characteristic 2 and let X be a hyperelliptic curve of genus g ≥ 2 over
κ. Let κ̄ be a separable algebraic closure of κ, and let w1, . . . , w2g+2 be the Weier-
strass points of X ⊗ κ̄. Let (wi, wj) be a pair of these. We have well-defined sets
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of symmetric roots {ℓijk}
ζ
k 6=i,j in κ̄ associated to i, j, parametrised by the elements

ζ of µ2g. The ζ’s give rise to a set of symmetric equations :

Cζ
ij = x

∏

k 6=i,j

(x− ℓijk)

for X over κ̄, parametrised by ζ. The discriminant:

dij =
∏

r,s 6=i,j

r 6=s

(ℓijr − ℓijs)

of a Cζ
ij is independent of the choice of ζ and is called the symmetric discriminant

of the pair (wi, wj). It is a well-defined element of the field of definition inside κ̄ of
(wi, wj). A small calculation shows that the formula:

(5.1)
dik
djk

= −ℓ
2g(2g+1)
ijk

holds in κ̄ for all k 6= i, j, allowing us to compute suitable powers of the symmetric
roots of X from the symmetric discriminants of X .

We start our construction of the rational section q with the case of a smooth
hyperelliptic curve π : X → S of genus g where S is a scheme whose generic points
are not of characteristic 2. By [10, Proposition 7.3] there exists a faithfully flat
morphism S′ → S such that the smooth hyperelliptic curve X×SS

′ → S′ has 2g+2
sectionsW1, . . . ,W2g+2 invariant for the hyperelliptic involution. Let (Wi,Wk) be a
pair of these. As we saw in Section 2 there exists a line bundle Qik on S′ associated
to (Wi,Wk) together with a canonical non-zero rational section qik of Qik. We can
and will view qik as a rational section of 〈ω, ω〉 on S′, by Proposition 2.1.

Let dik be the symmetric discriminant of (Wi,Wk), viewed as a rational function
on S′. We define:

(5.2) q = (24gdik)
g−1 · q⊗2g+1

ik ,

viewed as a rational section of (2g + 1)〈ω, ω〉 on S′.

Lemma 5.1. The rational section q of (2g + 1)〈ω, ω〉 is independent of the choice
of (Wi,Wk), and descends to a canonical rational section of (2g + 1)〈ω, ω〉 on S.

Proof. To see this, first fix an index k and consider the sections (24gdik)
g−1 ·q⊗2g+1

ik

and (24gdjk)
g−1 · q⊗2g+1

jk for i, j 6= k. According to equation (5.1) we have:

dik
djk

= −ℓ
2g(2g+1)
ijk ,

whereas by Theorem 3.1 we have:

q−1
ik ⊗ qjk = (−ℓ2gijk)

g−1 .

It follows that the (24gdik)
g−1 · q⊗2g+1

ik are mutually equal, where i runs over the
indices different from k. By symmetry considerations we can vary k as well and the
independence of q on the choice of (i, k) follows. By faithfully flat descent, see [14,
Exposé VIII, Théorème 1.1], we obtain that q comes from the base S. �

Let again Ig be the moduli stack of smooth hyperelliptic curves of genus g
over Z. By Lemma 5.1 we have q as a canonical rational section of the line bundle
(2g + 1)〈ω, ω〉 on Ig, and by pullback we obtain q on the base of any smooth
hyperelliptic curve. Even better, by extension we get q as a rational section on
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the base of any generically smooth hyperelliptic curve. We isolate this result in
a theorem. Let S be an integral scheme, let π : X → S be a generically smooth
hyperelliptic curve of genus g ≥ 2 over S, and let ω be the relative dualising sheaf
of π.

Theorem 5.2. The line bundle (2g + 1)〈ω, ω〉 on S has a canonical rational sec-
tion q. If S does not have generic characteristic equal to 2, then q is given by
equation (5.2). The formation of q is compatible with dominant base change.

The next result yields Theorems A and B as an immediate consequence.

Theorem 5.3. Assume that S is a normal integral scheme.

(i) the rational section q of (2g + 1)〈ω, ω〉 is in fact a global section, with no
zeroes if π is smooth.

Let K be either a complete discrete valuation field or let K equal R or C. Let K̄ be
an algebraic closure of K and assume that S = Spec(K̄). Let | · |a be the admissible
norm on (2g + 1)〈ω, ω〉. Then:

(ii) the formula:

− log |q|a = (2g − 2)χ(X)

holds;
(iii) if K does not have characteristic 2, and w1, . . . , w2g+2 on X ⊗ K̄ are the

Weierstrass points of X, then the formula:

− log |q|a = −4g(g − 1)



log |2|+
∑

k 6=i

(wi, wk)a





holds, for all i = 1, . . . , 2g+2, where (, )a denotes Zhang’s admissible pairing
on Div(X ⊗ K̄).

Proof. To prove that q has no zeroes if π is smooth, note that it suffices to prove
this in the case of the tautological curve over Ig. We have that Ig is normal,
as Ig → Spec(Z) is smooth by [8, Theorem 3]. Thus it is sufficient to prove the
statement for the case of a smooth hyperelliptic curve π : X → S where S is the
spectrum of a discrete valuation ring R of characteristic zero. We can and will
assume that all Weierstrass points of the generic fiber of π are rational, hence
extend to sections W1, . . . ,W2g+2 of π. Let ν(·) denote order of vanishing along
the closed point of S, and fix an index i. It is not hard to check the formula
∏

k 6=i dik = 1 for the symmetric discriminants. This gives us, directly from the
definition of q:

ν(q) = 4g(g − 1)ν(2) +
∑

k 6=i

ν(qik) .

Hence:

ν(q) = 4g(g − 1)



ν(2)−
∑

k 6=i

(Wi,Wk)



 ,

where (, ) denotes intersection product on Div(X). Note that the V ’s are empty. If
the residue characteristic of R is not equal to 2 we immediately obtain the vanishing



SYMMETRIC ROOTS AND ADMISSIBLE PAIRING 17

of ν(q) sinceWi is disjoint from eachWk. So assume that the residue characteristic
of R is equal to 2. It follows from the proof of Proposition 3.2 that:

2
∑

k 6=i

(Wi,Wk) = ν(4) .

We see that ν(q) vanishes in this case as well. This proves the second half of (i).
Now let as above λ = detRπ∗ω be the Hodge bundle on Ig, the stack-theoretic

closure of Ig in Mg, and let δ be the line bundle associated to the restriction of the

boundary divisor of Mg to Ig. By [12, Théorème 2.1] there exists an isomorphism:

µ : 3(8g + 4)λ− (2g + 1)δ
∼=
−→ (2g + 1)〈ω, ω〉

of line bundles on Ig. On the left hand side one has a canonical non-zero rational

section Λ⊗3
g ⊗ δ⊗−(2g+1), and on the right hand side one has the canonical rational

section q. We claim that under µ, these two rational sections are identified, up to a
sign. Indeed, the rational section Λ⊗3

g ⊗δ⊗−(2g+1) restricts to the global section Λ⊗3
g

of 3(8g+4)λ over Ig which is nowhere vanishing. By the second half of (i) we have

that q is nowhere vanishing as well, and hence, over Ig, the image of Λ⊗3
g ⊗δ⊗−(2g+1)

under µ differs from q by an invertible regular function. It is stated in [5, Lemma
7.3] that such a function is either +1 or −1. The claim follows.

The first half of (i) and statement (ii) follow from this fact that Λ⊗3
g ⊗ δ⊗−(2g+1)

and q are identified, up to sign. As to the first half of statement (i), from the
Cornalba-Harris equality (4.1) we see that, if S is normal, the rational section
Λ⊗3
g ⊗ δ⊗−(2g+1) of 3(8g + 4)λ − (2g + 1)δ is in fact global, as it gives rise to an

effective Cartier divisor on S. It follows that q is global too.
As to (ii), first take K to be a complete discrete valuation field. We may assume

that X has semistable reduction over K. Let R be the valuation ring of K and
let X → Spec(R) be the regular minimal model of X . As above we denote by ν(·)
order of vanishing along the closed point of Spec(R). We have:

ν(q) = 3ν(Λg)− (2g + 1)ν(δ) = 3d(X)− (2g + 1)δ(X) .

On the other hand, by [18, Theorem 4.4] we have:

ν(q) = − log |q|a + (2g + 1)ε(X) ,

and indeed the formula:

− log |q|a = (2g − 2)χ(X)

drops out.
Next let K be equal to R or C. By [12, Théorème 2.2] the isomorphism µ,

restricted to Spec(K̄), has admissible norm e(2g+1)δ(X). It follows that:

− log |q|a = −3 log ‖Λg‖(X)− (2g + 1)δ(X) = (2g − 2)χ(X)

in this case as well.
The formula in (iii) follows directly from the definition of q. Fix an index i.

Under the assumptions of (iii) we have:

− log |q|a = − log |(24gdik)
g−1 · q⊗2g+1

ik |a

for all k 6= i, hence, using the identity
∏

k 6=i dik = 1 once more:

− log |q|a = −4g(g − 1) log |2| −
∑

k 6=i

log |qik|a .
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We find:

− log |q|a = −4g(g − 1)



log |2|+
∑

k 6=i

(wi, wk)a





as required. �

Remark 5.4. Let K be a number field or the function field of a curve over a field
which is not of characteristic 2. Let X be a hyperelliptic curve over K of genus
g ≥ 2. Assume that X has semistable reduction over K, and that all Weierstrass
points w1, . . . , w2g+2 of X are rational over K. Let (ω, ω)a be the admissible self-
intersection of the relative dualising sheaf of X , and fix an index i. From (iii) of
the above theorem we obtain, by summing over all places of K, that:

(2g + 1)(ω, ω)a = −4g(g − 1)
∑

k 6=i

(wi, wk)a ,

where (wi, wk)a is now the global admissible pairing of wi, wk on X . We note that
from the fact that the global (, )a restricts to minus the Néron-Tate pairing on
degree-0 divisors [18, Section 5.4] one may actually infer the stronger identity:

(ω, ω)a = −4g(g − 1)(wi, wk)a

for any two indices i, k. It is not true, however, that the local intersections (wi, wk)a
are in general independent of the choice of i, k.

Remark 5.5. The combinatorial optimisation methods used in [16] to prove effective
lower bounds for χ in the non-archimedean case are quite complicated. It would
be interesting to see whether the simple formula from Theorem B could be used to
obtain good lower bounds for χ in an easier fashion. Note that the global section
q in the function field case in some sense “explains” the strict positivity of (ω, ω)a
for non-isotrivial hyperelliptic fibrations.

Remark 5.6. Let K be the fraction field of a discrete valuation ring R of residue
characteristic not equal to 2, and fix a separable algebraic closure K̄ of K. The

symmetric equations Cζ
ij of a hyperelliptic curve X over K have good properties,

for example:

• if X has potentially good reduction over R then the coefficients of Cζ
ij in K̄

are integral over R, and Cζ
ij has good reduction over R[Cζ

ij ];

• if the coefficients of Cζ
ij in K̄ are integral over R, then Cζ

ij is a minimal

equation of X over R[Cζ
ij ].

For details and proofs of these facts we refer to [4, Section 2].

6. Connection with Zhang’s ϕ-invariant

Let K be a field which is either a number field or the function field of a curve
over a field. Let X be a smooth projective geometrically connected curve of genus
g ≥ 2 over K, and assume that X has semistable reduction over K. In a recent
paper [19] S.-W. Zhang introduced, for each place v of K, a real-valued invariant
ϕ(Xv) of X ⊗Kv, as follows:

• if v is a non-archimedean place, then:

ϕ(Xv) = −
1

4
δ(Xv) +

1

4

∫

R(Xv)

gv(x, x)((10g + 2)µv − δKXv
) ,
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where:
– δ(Xv) is the number of singular points on the special fiber of X at v,
– R(Xv) is the reduction graph of X at v,
– gv is the Green’s function for the admissible metric µv on R(Xv),
– KXv

is the canonical divisor on R(Xv).
In particular, ϕ(Xv) = 0 if X has good reduction at v;

• if v is an archimedean place, then:

ϕ(Xv) =
∑

ℓ

2

λℓ

g
∑

m,n=1

∣

∣

∣

∣

∣

∫

X(K̄v)

φℓωmω̄n

∣

∣

∣

∣

∣

2

,

where φℓ are the non-constant normalised real eigenforms of the Arakelov
Laplacian on the compact Riemann surfaceX(K̄v), with eigenvalues λℓ > 0,
and (ω1, . . . , ωg) is an orthonormal basis for the hermitian inner product
(ω, η) 7→ i

2

∫

X(K̄v)
ω η̄ on the space of holomorphic differentials.

The adelic invariant ϕ connects the admissible self-intersection of the relative du-
alising sheaf of X and the height of the canonical Gross-Schoen cycle on X3.

Theorem 6.1. (Zhang [19]) Let (ω, ω)a be the admissible self-intersection of the
relative dualising sheaf of X, and let 〈∆ξ,∆ξ〉 be the height of the canonical Gross-
Schoen cycle on X3. Then:

(ω, ω)a =
2g − 2

2g + 1

(

〈∆ξ,∆ξ〉+
∑

v

ϕ(Xv) logNv

)

,

where v runs over the places of K. Here the Nv are the local factors associated to
v as discussed in Section 4 above. If X is hyperelliptic, then 〈∆ξ,∆ξ〉 = 0, and
hence the formula:

(6.1) (ω, ω)a =
2g − 2

2g + 1

∑

v

ϕ(Xv) logNv

holds.

The invariant ϕ arises in a natural way as an adelic intersection number on the
self-product X2 of X , cf. [19, Theorem 2.5.1]. Note the striking resemblance of
ϕ with χ, for hyperelliptic curves: like ϕ, the invariant χ vanishes at each non-
archimedean place of good reduction, and one has (6.1) with χ instead of ϕ, see
formula (4.4).

The canonical nature of both ϕ and χ leads us to make the following:

Conjecture 6.2. Assume that X is hyperelliptic. Then ϕ(Xv) = χ(Xv) for each
place v of K.

This conjecture has the following interesting corollary. Assume that K is a
number field. Let π : X → S be the regular minimal model of X over the ring of
integers of K. Then π is a generically smooth semistable hyperelliptic curve. By
Theorem 5.3(i) we have q as a canonical global section of the bundle (2g+1)〈ω, ω〉
on S, and by (ii) of the same theorem (2g − 2)χ(Xv) = − log |q|a at each place v
of K. The latter quantity is, as we have seen from the results of Moriwaki and
Yamaki, non-negative if v is non-archimedean.

Consider now the case that v is an archimedean place. It is clear from the def-
inition of ϕ given above that ϕ(Xv) ≥ 0. But in fact one has ϕ(Xv) > 0, as is
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explained in [19, Remark 2.5.1]. So, if ϕ(Xv) = χ(Xv) would hold, it follows that
− log |q|a is positive on the archimedean places. In other words, the section q is
a small section of (2g + 1)〈ω, ω〉. The Bogomolov conjecture, i.e. the statement
that (ω, ω)a is strictly positive, would follow in a conceptual way by taking the
admissible Arakelov degree of q.

Note. It follows rather directly from [17, Theorem 3.5] (archimedean case) and [6,
Theorem 3.4] (non-archimedean case) that Conjecture 6.2 is in fact true.
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[14] Séminaire de géométrie algébrique du Bois Marie 1960-61 I: Revêtements étales et
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